Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.
نویسندگان
چکیده
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect transistors. Over 100 devices are studied to obtain a statistical description of device performance in CVD MoS2. We examine and scale down the channel length of the transistors to 100 nm and achieve record high drain current of 62.5 mA/mm in CVD monolayer MoS2 film ever reported. We further extract the intrinsic contact resistance of low work function metal Ti on monolayer CVD MoS2 with an expectation value of 175 Ω·mm, which can be significantly decreased to 10 Ω·mm by appropriate gating. Finally, field-effect mobilities (μFE) of the carriers at various channel lengths are obtained. By taking the impact of contact resistance into account, an average and maximum intrinsic μFE is estimated to be 13.0 and 21.6 cm(2)/(V s) in monolayer CVD MoS2 films, respectively.
منابع مشابه
High-performance MoS2 transistors with low-resistance molybdenum contacts
Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.
متن کاملSelective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices
Articles you may be interested in Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl. Detection of organic vapors by graphene films functionalized with metallic nanoparticles Oxygen sensing properties at high temperatu...
متن کاملElectrical Properties of Synthesized Large-Area MoS<sub>2</sub> Field-Effect Transistors Fabricated with Inkjet-Printed Contacts
We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the topcontact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process with...
متن کاملElectrical Properties of Synthesized Large-Area MoS₂ Field-Effect Transistors Fabricated with Inkjet-Printed Contacts.
We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process wit...
متن کاملFabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors
Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2013